电源适配器

电源适配器

设为首页 |  加入收藏 进入中文版 ENGLISH
产品分类
新闻动态

• AC/DC开关电源注意事项

• 同步整流电源电路结构与工作原理

• 电源适配器市场发展趋势

• LED驱动电源市场趋势预测

• 充电器三大注意事项,手机充电小提示

• 内置电源与外置电源差别

• IEC/EN60065认证标准电源适配器

• 手工焊接的烙铁温度设定

• 路盛源2017年调价通知

• 深圳路盛源科技有限公司10年荣誉

• 原材料上涨,电源行业或重新洗牌

• 自动计算6级能效的公式|如何计算电源适配器6级能效

• 怎样选择效果器电源,怎样选择一款好的效果器单块电源.

• MID平板电脑跳屏电源测试标准

• 使用可换头电源适配器需注意的事项

• 光耦在开关电源中起什么作用

• USB充电器基础

更多>>
联系我们

联系人: 何先生
电话: +86-755-23055811-606
传真: +86-755-23055911
手机: +86-13267058944
E-mail: [email protected]
地址: 深圳市宝安区福永街道重庆路万利业科技园B栋A7楼
QQ:995019294
旺旺: szlsy002

新闻动态

OB2263加图腾驱动

分享到:
来源:路盛源 发布时间:2012-12-17 19:46:04

       因为OB2263直接驱动时,只适合做到36W左右,为了降你成本,很多工程师在实际应用中,都加上了图腾柱驱动,那么,什么是图腾柱驱动呢?在实际应用中有会有什么问题呢?

OB2263加图腾

由于此结构画出的电路图有点儿象印第安人的图腾柱(图中左下角的照片),所以叫图腾柱式输出(也叫图腾式输出)。输出级分别采用一个NPN型晶体管和一个PNP型晶体管。NPN管集电极接正电源(或接地),发射极接下面PNP管的发射极,同时输出;PNP管的集电极接地(或负电源)。两管的基极同时接前级的控制端。就是上下两个输出管,从直流角度看是串联,而从交流看是并联,两管发射极连接处为输出端,实际是一对射极跟随器。追随输入电平,上管导通、下管截止输出高电平,下管导通、上管截止输出低电平,如果上下两管均截止则输出为高阻态。在开关电源中,类似的电路常称为“半桥”。

 

1.不就是OUT高位时,上三极管导通,下三极管关断,Rgate接上Vdrv,MOS开通,

OUT低位时,反过来,Rgate接地,MOS关断。

2.

 

输出极采用一个上电阻接一个NPN型晶体管的集电极,这个管子的发射极接下面管子的集电极同时输出;下管的发射极接地.两管的基极分别接前级的控制.就是上下两个输出管,从直流角度看是串联,两管联接处为输出端.上管导通下管截止输出高电平,下管导通上管截止输出低电平,如果电路逻辑可以上下两管均截止则输出为高阻态.

其实也是用NPN和PNP管子的搭配使用,当上升沿的时候NPN工作打开,当下降沿的时候PNP工作关闭,依次循环。

3.

 

这个电路看似简单,其实用起来要考虑的还比较多,简单谈谈个人的看法,先声明一下,只是随手总结,可能有不对或不足之处,

1)首先要确定的是你需要多少的驱动能力?要驱动的负载(一般可认为是功率管)有多少?以MOSFET为例,驱动其实就是对MOS的门级电容的充放电,这就要考虑你有几个MOS并联,门级电容有多大?MOS的Rg 有多大,加上驱动回路寄生电感等,其实就是一个LRC串联回路。

2)驱动能力用个简化的公式来算就是I=C*Du/Dt,MOS的门级电容先确定,再来考虑你准备要几V的门级电压,然后就是这个电压建立和消除的时间,也就牵涉到MOS的开通关断速度,这会直接影响到功率管的损耗及其它问题,如应力等。这几个想好了,所要的驱动电流也就出来了。

3)得到这个所要的驱动电流,再考虑上驱动回路的一堆寄生参数等,也就可以推出你图腾柱电路需提供多少驱动电流(注意这是个脉冲电流)。

4)这个时候再考虑的就是你PCB板layout的空间,位置,准备为这个电路花多少钱选器件,用MOS还是BJT,综合考虑,然后就想办法选器件吧,当然还要考虑IC的输出信号和你选的图腾柱器件(MOS或BJT)之间也是个回路,这会不会有问题?

5) 另外要考虑的是,这个图腾柱能不能彻底关掉,这就又要考虑N在上还是P在上,正开还是负开,比如选用PMOS做关断,关断时图腾柱输出会仍有一个等于Vgs电压的电压加在你的负载MOS上,如果这个电压高于你的负载MOS门槛的话,----这就意味着你没关掉,虽然你前面关掉了。更痛苦的是,前面和后面的MOS门槛电压tolerance都会非常大,再考虑到温度系数,......这要坐下来算算了

6)还要重点考虑的是图腾柱的器件也是要损耗功率的,所以要考虑它的温度及功耗会不会有问题。

总之,具体用时要考虑的问题还真不少,单挑一个出来都非常简单,但加到一块,还真要花点时间研究计算一下。因为是做产品,所有的规格参数,寄生参数,tolerance,温度,cost, PCB空间等等等等,前前后后的一堆问题都得面对,不象写paper或仿真,抓住一点,其它都可考虑为理想状态,这样当然很快可以推出理想的结果。本人在实际应用时遇到过的问题是:干扰使输出波形杂迅很大。解决的办法是Layout时线路要走好,而且驱动离MOS G极的距离要尽量短.